Ternary Spacecraft

Ing. Giuseppe Talarico e-mail: giustala@gmail.com

About me:

My name is Giuseppe Talarico.
I'm an electronic engineer from Catanzaro.
As circuital designer I worked with:

Vimercate (MI) Digital Radio Link "HTN6U"

Misterbianco (CT) Digital Speech Interpolation

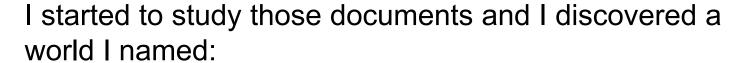
Germantown - Maryland - USA

Selenia-DCC Project: Italsat-F1 Satellite

ITALSAT-F1

Launched on 16th January 1991 from the Kourou Base in French Guiana

How and why:


It all began in 1981 when I was a young electronic engineer at the *Telettra* in Vimercate and I heard someone talking about "Three Level Logic".

The Internet did not exist at the time and therefore I could not investigate the subject.

....thirty three years later (2014)

A student brought me some photocopies of *prof.*Douglas Jones from the lowa University-USA with subject: "Ternary Logic".

"The Galaxy of Ternary Logic".

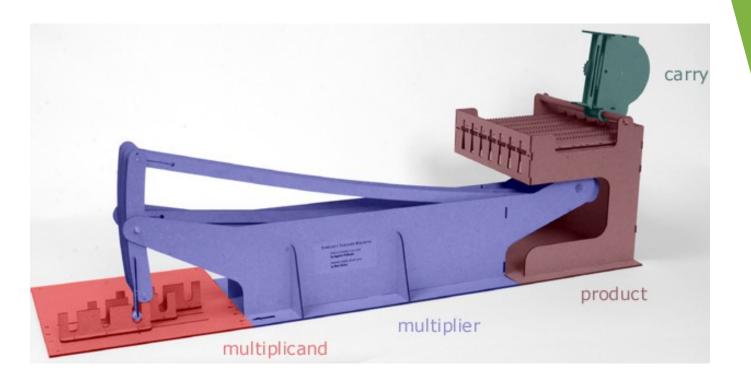
Ercolino Scalfaro Catanzaro

Who's the first?

- 1 shilling = 12 pence
- 1 florin = 2 shillings
- 1 half crown = 2 shillings and 6
- £1 = 20 shillings = 240 pence

In the 1830s *Thomas Flowler* (1777 – 1843), to simplify his ripetitive monetary calculations (pre-decimal British currency), began to use Binary and Ternary representations as reported in his book published in 1838:

"Tables for Facilitating Arithmetical Calculations"



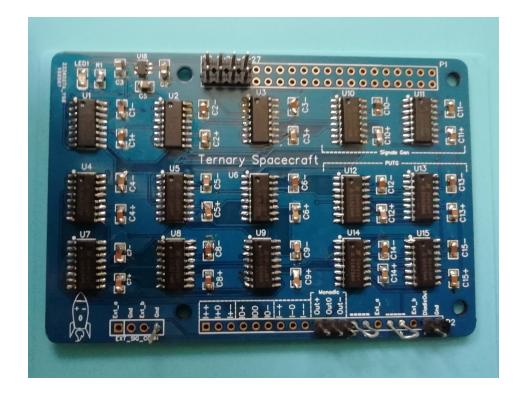
Furthermore, Thomas created a mechanical calculator that, for the first time, used a "Balanced Ternary Notation" (-, 0,+) to perform arithmetic calculations.

The original drawings of his "55 digits calculator" were lost.

In 1997 a reduced implementation of this mechanical calculator has been constructed from a two-page description of it made in 1840 by *Augustus De Morgan*.

The figure shows a modern 3D printed construction based on De Morgan description.

What's this Hardware?



It is just:

- a Ternary Spacecraft board
- •a "card computer"
- a monitor
- an Oscillocope must be used too.

Ternary Spacecraft board:

Ternary Spacecraft

 It is a board interfaced with a "card computer" operating in Balanced Ternary Logic (-1,0,1).

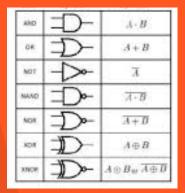
 Two python software modules allows to explore, using an oscilloscope, the "galaxy" of Ternary Logic.

Binary System

In the binary system there are 2^{(2)^k} possible k-argument functions.

- k=1: c = f(a)
- k=2: c = f(a,b)

So, there are:


$$2^2 = 4$$
 Monadic functions or Truth tables

$$2^4 = 16$$
 Dyadic functions or Truth tables

Binary "building bricks":

Just one of the four monadic functions is currently used as logical gate: the

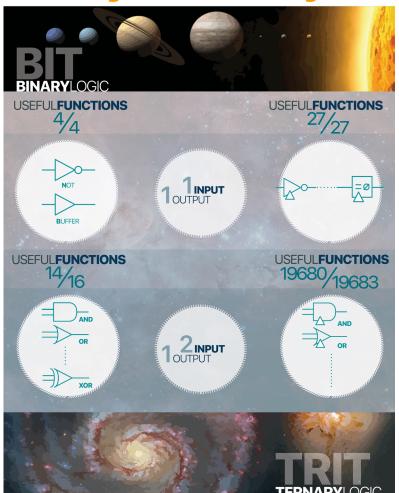
NOT

Six of sixteen dyadic functions give rise to logical gates that can be used in the design of logical boards:

AND, NAND, OR, NOR, XOR, XNOR.

Ternary System

+ 0_

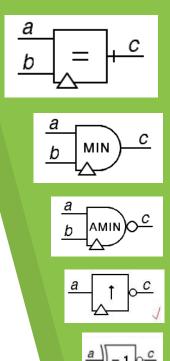

In the Ternary system there are 3^{(3)^k} possible k-argument ternary functions, so we have:

$$3^3 = 27$$
 Monadic functions or Truth tables

$$3^9 = 19'683$$
 Dyadic functions or Truth tables

The number of dyadic functions is incredibly high!

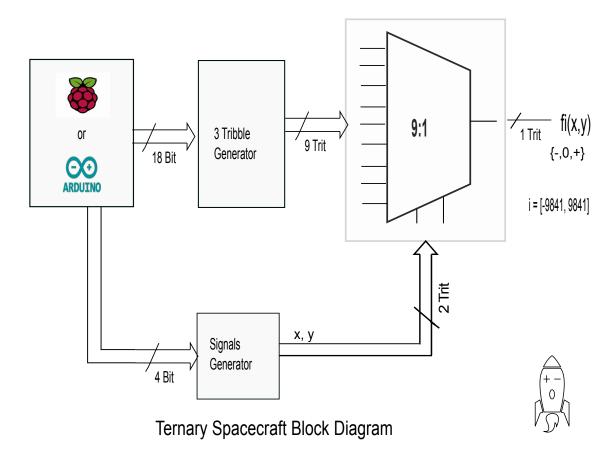
Binary vs.Ternary:

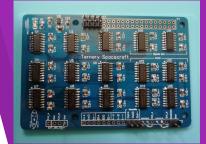

Nobody, until now, has ever ventured into the complete exploration of such a high number of dyadic functions (dyadic gates) also due to the lack of logical components operating on three levels (ternary logic).

• In this galaxy of possible components, the majority of them have neither a name nor a symbol.

 Their Input-Output logical functions are almost all unknown.

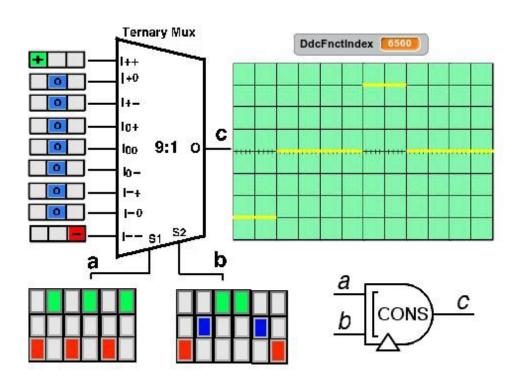
My board allows to explore the whole "Ternary Galaxy" of possible gates by using an oscilloscope.



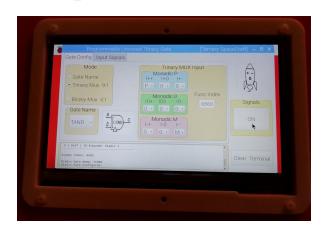


System Block Diagram:

The hardware designed implements a:


Programmable Universal Ternary Gate

By programming, from time to time, the *truth table* of the inputs of the 9:1 ternary mux we can get all the 19'683 possible gates.


Finally, the board allows us to programming two ternary Input (Trit signals) and to visualize the Output Trit signal waveform.

Simulation: "Consensus Gate"

Implementation: "Consensus Gate"

Summing up

The board allows to explore the entire Ternary Galaxy to discover "inhabited worlds", alias components useful for designing future logic circuits. Hence, the board is a:

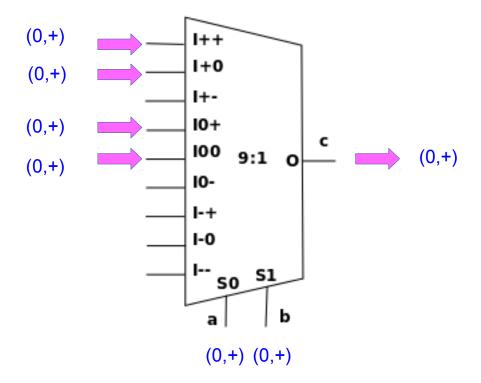
Powerfull "Investigation Intrument".

Monadic Subsets

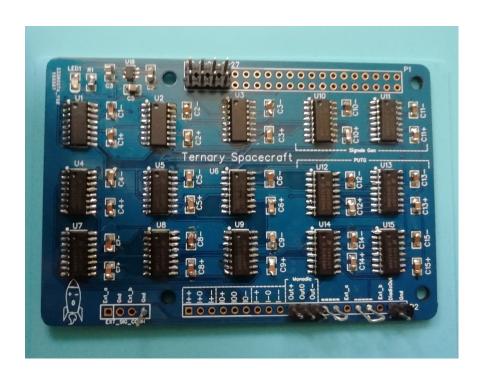
The 27 Ternary Monadic functions or Truth Tables can be grouped as follow:

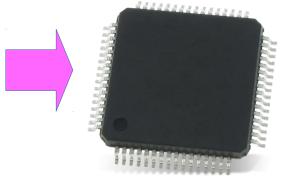
- 8 with the output in Pure Binary [0,1]
- 6 with Binary output but ternary levels [-1, 1]
- 7 with Binary output with negative levels [-1, 0]
- 6 with three-level output [-1, 0, 1]

Dyadic Subsets



The 19'683 Ternary Dyadic functions or Truth Tables can be grouped as follow: :


- 512 with the output in Pure Binary [0,1]
- 216 with Binary output but ternary levels [-1, 1]
- 343 with Binary output with negative levels [-1, 0]
- 18'612 with three-level output [-1, 0, 1]


Board Binary Compatibility

Next Step to do:

Thanks DIGITH ON Thanks Puglia.

For more information, please visit my site: giuseppetalarico.wordpress.com

